Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38683721

RESUMEN

Fundus photography, in combination with the ultra-wide-angle fundus (UWF) techniques, becomes an indispensable diagnostic tool in clinical settings by offering a more comprehensive view of the retina. Nonetheless, UWF fluorescein angiography (UWF-FA) necessitates the administration of a fluorescent dye via injection into the patient's hand or elbow unlike UWF scanning laser ophthalmoscopy (UWF-SLO). To mitigate potential adverse effects associated with injections, researchers have proposed the development of cross-modality medical image generation algorithms capable of converting UWF-SLO images into their UWF-FA counterparts. Current image generation techniques applied to fundus photography encounter difficulties in producing high-resolution retinal images, particularly in capturing minute vascular lesions. To address these issues, we introduce a novel conditional generative adversarial network (UWAFA-GAN) to synthesize UWF-FA from UWF-SLO. This approach employs multi-scale generators and an attention transmit module to efficiently extract both global structures and local lesions. Additionally, to counteract the image blurriness issue that arises from training with misaligned data, a registration module is integrated within this framework. Our method performs non-trivially on inception scores and details generation. Clinical user studies further indicate that the UWF-FA images generated by UWAFA-GAN are clinically comparable to authentic images in terms of diagnostic reliability. Empirical evaluations on our proprietary UWF image datasets elucidate that UWAFA-GAN outperforms extant methodologies. The code is accessible at https://github.com/Tinysqua/UWAFA-GAN.

2.
Fitoterapia ; 175: 105974, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38663563

RESUMEN

Alhagi honey is derived from the secretory granules of Alhagi pseudoalhagi Desv., a leguminous plant commonly known as camelthorn. Modern medical research has demonstrated that the extract of Alhagi honey possesses regulatory properties for the gastrointestinal tract and immune system, as well as exerts anti-tumor, anti-oxidative, anti-inflammatory, anti-bacterial, and hepatoprotective effects. The aim of this study was to isolate and purify oligosaccharide monomers (referred to as Mel) from camelthorn and elucidate their structural characteristics. Subsequently, the impact of Mel on liver injury induced by carbon tetrachloride (CCl4) in mice was investigated. The analysis identified the isolated oligosaccharide monomer (α-D-Glcp-(1 â†’ 3)-ß-D-Fruf-(2 â†’ 1)-α-D-Glcp), with the molecular formula C18H32O16. In a mouse model of CCl4-induced liver fibrosis, Mel demonstrated significant therapeutic effects by attenuating the development of fibrosis. Moreover, it enhanced anti-oxidant enzyme activity (glutathione peroxidase and superoxide dismutase) in liver tissues, thereby reducing oxidative stress markers (malondialdehyde and reactive oxygen species). Mel also improved serum albumin levels, lowered liver enzyme activities (aspartate aminotransferase and alanine aminotransferase), and decreased inflammatory factors (tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6). Immunohistochemistry, immunofluorescence, and western blotting analyses confirmed the ability of Mel to downregulate hepatic stellate cell-specific markers (collagen type I alpha 1 chain, alpha-smooth muscle actin, transforming growth factor-beta 1. Non-targeted metabolomics analysis revealed the influence of Mel on metabolic pathways related to glutathione, niacin, pyrimidine, butyric acid, and amino acids. In conclusion, the results of our study highlight the promising potential of Mel, derived from Alhagi honey, as a viable candidate drug for treating liver fibrosis. This discovery offers a potentially advantageous option for individuals seeking natural and effective means to promote liver health.

3.
Rice (N Y) ; 17(1): 16, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374238

RESUMEN

High temperature during grain filling considerably reduces yield and quality in rice, but its molecular mechanisms are not fully understood. We investigated the functions of a seed preferentially expressed Aux/IAA gene, OsIAA29, under high temperature-stress in grain filling using CRISPR/Cas9, RNAi, and overexpression. We observed that the osiaa29 had a higher percentage of shrunken and chalkiness seed, as well as lower 1000-grain weight than ZH11 under high temperature. Meanwhile, the expression of OsIAA29 was induced and the IAA content was remarkably reduced in the ZH11 seeds under high temperature. In addition, OsIAA29 may enhance the transcriptional activation activity of OsARF17 through competition with OsIAA21 binding to OsARF17. Finally, chromatin immunoprecipitation quantitative real-time PCR (ChIP-qPCR) results proved that OsARF17 regulated expression of several starch and protein synthesis related genes (like OsPDIL1-1, OsSS1, OsNAC20, OsSBE1, and OsC2H2). Therefore, OsIAA29 regulates seed development in high temperature through competition with OsIAA21 in the binding to OsARF17, mediating auxin signaling pathway in rice. This study provides a theoretical basis and gene resources for auxin signaling and effective molecular design breeding.

4.
Environ Sci Technol ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329941

RESUMEN

Perfluoroalkyl substances (PFAS) are a class of persistent organic pollutants known as "forever chemicals". Currently, the hydrated electron-based advanced reduction process (ARP) holds promise for the elimination of PFAS. However, the efficiency of ARP is often challenged by an oxygen-rich environment, resulting in the consumption of hydrated electron source materials in exchange for the high PFAS decomposition efficiency. Herein, we developed a ternary system constructed by indole and isopropyl alcohol (IPA), and the addition of IPA significantly enhanced the PFOA degradation and defluorination efficiency in the presence of low-concentration indole (<0.4 mM). Meanwhile, opposite results were obtained with a higher amount of indole (>0.4 mM). Further exploring the molecular mechanism of the reaction system, the addition of IPA played two roles. On one hand, IPA built an anaerobic reaction atmosphere and improved the yield and utilization efficiency of hydrated electrons with a low concentration of indole. On the other hand, IPA suppressed the attraction between indole and PFOA, thus reducing the hydrated electron transfer efficiency, especially with more indole. In general, the indole/PFAS/IPA system significantly improved the PFAS destruction efficiency with a small amount of hydrated electron donors, which provided new insights for development of simple and efficient techniques for the treatment of PFAS-contaminated wastewater.

5.
Environ Sci Technol ; 57(50): 21459-21469, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38056012

RESUMEN

The hydrated electron (eaq-) system is typically suitable for degrading perfluoroalkyl substances (PFASs). To enhance eaq- utilization, we synthesized a new indole compound (DIHA) that forms stable nanospheres (100-200 nm) in water via a supramolecular assembly. Herein, the DIHA nanoemulsion system exhibits high degradation efficiencies toward a broad category of PFASs, regardless of the headgroup, chain length, and branching structure, under UV (254 nm) irradiation. The strong adsorption of PFAS on the DIHA surface ensures its effective degradation/defluorination. Quenching experiments further demonstrated that the reaction took place on the surface of DIHA nanospheres. This specific heterogeneous surface reaction unveiled novel PFAS degradation and defluorination mechanisms that differ from previously reported eaq- systems. First, the photogenerated surface electrons nonselectively attacked multiple C-F bonds of the -CF2- chain. This plays a dominant degrading/defluorinating role in the DIHA system. Second, abundant hydroxyl radicals (•OH) were also produced, leading to synergistic reduction (by surface electron) and oxidation (by surface •OH) in a single system. This facilitates faster and deeper defluorination of different structured PFASs through multiple pathways. The new mechanism inspires the design of innovative organo-heterogeneous eaq- systems possessing synergistic reduction and oxidation functions, thereby making them potentially effective for treating PFAS-contaminated water.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Fluorocarburos/análisis , Agua , Oxidación-Reducción , Electrones , Adsorción , Contaminantes Químicos del Agua/análisis
6.
Water Res ; 246: 120697, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37837899

RESUMEN

The selective and rapid elimination of refractory organic pollutants from surface water is significant. However, the relationship of between reactive oxygen species (ROSs) and diversified pollutants molecular structures still needs to be further clarified. Here, we utilize polydopamine (PDA)-assisted coating strategy to prepare hollow 2D carbon nanosheet (ZPL-HCNS) and 2D Co3O4 nanosheet (ZPL-Co3O4) by thermolysis of PDA coated ZIF-L (ZIF-L@PDA) precursor under different gas atmosphere, which realizes the controlled generation of radicals and non-radicals. Organic pollutants including bisphenols, sulfonamides, quinolones, tetracyclines, and azo dyes are applied to assess the catalytic performance. Results show that dyes containing azo structure are more likely to be degraded by radical process, which is due to that the energy (ΔE) requirements to break the azo bond is higher than energy released from singlet oxygen to oxygen molecule and lower than that of sulfate radical to sulfate. Frontier molecular orbital theory HOMO-LUMO and Fukui function expounded the possible selectivity mechanism. In addition, the degradation pathway and biotoxicity test are carried out. This work provides a reference to illustrate the selective degradation for ROSs and molecular structure of pollutants.


Asunto(s)
Contaminantes Ambientales , Especies Reactivas de Oxígeno , Estructura Molecular , Oxígeno Singlete , Oxidación-Reducción
7.
Int J Mol Sci ; 24(16)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37629184

RESUMEN

Plant defense responses against insect pests are intricately regulated by highly complex regulatory networks. Post-translational modifications (PTMs) of histones modulate the expression of genes involved in various biological processes. However, the role of PTMs in conferring insect resistance remains unclear. Through the screening of a T-DNA insertion activation-tagged mutant collection in rice, we identified the mutant planthopper susceptible 1 (phs1), which exhibits heightened expression of SET domain group 703 (SDG703). This overexpression is associated with increased susceptibility to the small brown planthopper (SBPH), an economically significant insect pest affecting rice crops. SDG703 is constitutively expressed in multiple tissues and shows substantial upregulation in response to SBPH feeding. SDG703 demonstrates the activity of histone H3K9 methyltransferase. Transcriptomic analysis revealed the downregulation of genes involved in effector-triggered immunity (ETI) and pattern-triggered immunity (PTI) in plants overexpressing SDG703. Among the downregulated genes, the overexpression of SDG703 in plants resulted in a higher level of histone H3K9 methylation compared to control plants. Collectively, these findings indicate that SDG703 suppresses the expression of defense-related genes through the promotion of histone methylation, consequently leading to reduced resistance against SBPH. The defense-related genes regulated by histone methylation present valuable targets for developing effective pest management strategies in future studies. Furthermore, our study provides novel insight into the epigenetic regulation involved in plant-insect resistance.


Asunto(s)
Hemípteros , Oryza , Animales , Epigénesis Genética , Histonas , Dominios PR-SET , Regulación hacia Abajo , Histona Metiltransferasas , Oryza/genética
8.
J Colloid Interface Sci ; 652(Pt A): 69-81, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37591085

RESUMEN

Electrospinning MOFs nanoparticles derived porous carbon nanofibers with rational structure and design are recently as environmentally friendly and highly efficient catalytic materials for wastewater treatment. However, most of the pore-making strategies are based on precursors structural shrinkage during pyrolysis, which is a challenge to create abundant large pores and open channels. Here, a confined expansion pore-making strategy with active MOF is introduced, where energetic Zn-MOF (Zn2+/triazole) and ZIF-67 (Co2+/dimethylimidazole) are utilized as pore forming additive and precursor of active sites, respectively. The high nitrogen content gives triazole the ability to puff up and realizes N-doped during pyrolysis. Moreover, degradation mechanisms and pathways of pollutants were measured by 3D EEM, LC-MS, quenching experiments, and Fukui function. This pore-making strategy via energetic MOF local contraction and expansion provides a novel method to prepare diversiform function porous carbon materials for environmental remediation.

9.
Environ Sci Technol ; 57(28): 10438-10447, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37406161

RESUMEN

Perfluorochemicals (PFCs), especially perfluorooctanoic acid (PFOA), have contaminated the ground and surface waters throughout the world. Efficient removal of PFCs from contaminated waters has been a major challenge. This study developed a novel UV-based reaction system to achieve fast PFOA adsorption and decomposition without addition of sacrificial chemicals by using synthetic photocatalyst sphalerite (ZnS-[N]) with sufficient surface amination and defects. The obtained ZnS-[N] has the capability of both reduction and oxidation due to the suitable band gap and photo-generated hole-trapping properties created by surface defects. The cooperated organic amine functional groups on the surface of ZnS-[N] play a crucial role in the selective adsorption of PFOA, which guarantee the efficient destruction of PFOA subsequently, and 1 µg L-1 PFOA could be degraded to <70 ng L-1 after 3 h in the presence of 0.75 g L-1 ZnS-[N] under 500 W UV irradiation. In this process, the photogenerated electrons (reduction) and holes (oxidation) on the ZnS-[N] surface work in a synergistic manner to achieve complete defluorination of PFOA. This study not only provides promising green technology for PFC-pollution remediation but also highlights the significance of developing a target system capable of both reduction and oxidation for PFC degradation.


Asunto(s)
Aminas , Fluorocarburos , Hidrocarburos Fluorados , Caprilatos/química
10.
J Mol Model ; 29(5): 142, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37061582

RESUMEN

CONTEXT: In this study, the reactions of hydrated electron (e-(aq)) with alkyl and aryl halides were simulated with an ab initial molecular dynamics (AIMD) method to reveal the underlying mechanism. An original protocol was developed for preparing the proper initial wavefunction guess of AIMD, in which a single electron was curled in a tetrahedral cavity of four water molecules. Our results show that the stability of e-(aq) increases with the hydrogen bond grid integrity. The organic halides prefer to react with e-(aq) in neutral or alkaline environment, while they are more likely to react with hydrogen radical (the product of e-(aq) and proton) under acidic conditions. The reaction between fluorobenzene/fluoromethane and hydrogen radical is considered as the least favorable reaction due to the highest reaction barriers. The bond dissociation energy (BDE) suggested that the cleavage of the carbon-halogen bond of their anion radical might be a thermodynamically favorable reaction. AIMD results indicated that the LUMO or higher orbitals were the e-(aq) migration destination. The transplanted electron enhanced carbon-halogen bond vibration intensively, leading to bond cleavage. The solvation process of the departing halogen anions was observed in both fluorobenzene and fluoromethane AIMD simulation, indicating that it might have a significant effect on enthalpy. Side reactions and byproducts obtained during the AIMD simulation suggested the complexity of the e-(aq) reactions and further investigation was needed to fully understand the reaction mechanisms. This study provided theoretical insight into the pollutant environmental fate and constructed a methodological foundation for AIMD simulation of analogous free radical reactions. METHODS: The theoretical calculation was conducted on the combination of Gaussian16 and ORCA5.0.3 software packages. The initial geometries, as well as the wavefunction initial guesses, were obtained at PBE0/ma-def2-TZVP/IEFPCM-water level in Gaussian16 unless otherwise stated. AIMD simulations were performed at the same level in ORCA. Wavefunction analysis was carried out with Multiwfn. The details methods were described in the section "Computational details" section.

11.
Sci Total Environ ; 876: 162760, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36906035

RESUMEN

Perfluorooctanoic acid (PFOA) has attracted worldwide attention owing to its widespread distribution and potential ecological risks. Developing low-cost, green-chemical and highly efficient treatment approaches is significant for treating PFOA caused environmental issues. Herein, we propose a feasible PFOA degradation strategy under UV irradiation by adding Fe (III)-saturated montmorillonite (Fe-MMT), and the Fe-MMT could be regenerated after reaction. In our system consisting of 1 g L-1 Fe-MMT and 24 µM PFOA, nearly 90 % initial PFOA could be decomposed within 48 h. The enhanced PFOA decomposition could be explained by the ligand-to-metal charge transfer mechanism based on the generated reactive oxygen species (ROSs) and the transformation of iron species in the MMT layers. Moreover, the special PFOA degradation pathway was revealed according to the intermediate identification and the density functional theory calculation. Further experiments demonstrated that even in the presence of co-existing natural organic natter (NOM) and inorganic ions, efficient PFOA removal could still be obtained in UV/Fe-MMT system. This study offers a green-chemical strategy for PFOA removal from contaminated waters.

12.
Sci Total Environ ; 855: 158750, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36108839

RESUMEN

Tylosin (TYL) is a ubiquitous macrolide antibiotic which has been frequently detected in natural aqueous environment. Montmorillonite (MMT), a major component of natural suspended particles, plays essential roles in the transportation and transformation processes of various organic contaminants. This study systematically investigated the photodegradation behavior and mechanism of TYL in MMT suspensions under simulated sunlight irradiation. In the existence of 0.1 g L-1 Na-MMT, >80.8 % TYL was degraded after 8 h irradiation, which was significantly higher than that in the absence of MMT (42.5 %). Further mechanistic studies suggested that the synergistic effects including the formation of surface complex and the generation of surface hydroxyl radicals play essential roles in the accelerated TYL phototransformation. Meanwhile, other factors like exchangeable cations of MMTs, pH and ionic strength could also strongly influence the TYL photodegradation. The probable degradation pathways of TYL in MMT suspension was further proposed based on the detected intermediates and DFT calculations. Photobacterium phospherium T3 bioluminescent assay revealed that the photodegradation products of TYL have a lower acute toxicity than bulk TYL, especially in the presence of MMT. This study provides new insights for the photodegradation pathways of organic contaminants in aqueous environments, which is of great importance for assessing the fate and risk of emerging pollutants in natural surface water bodies.


Asunto(s)
Tilosina , Contaminantes Químicos del Agua , Adsorción , Bentonita , Radical Hidroxilo , Fotólisis , Agua
13.
Bull Environ Contam Toxicol ; 109(6): 1167-1174, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36331577

RESUMEN

Novel visible-light-driven Ag3PO4/AgBr/AgI photocatalysts were prepared via a simple self-assembly strategy combined with in-situ anion-exchanging process. The photocatalytic activity of Ag3PO4 was significantly improved by constructing double-Z system. Specifically, the obtained materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectroscopy (DRS). Under visible light irradiation (λ > 420 nm), the Ag3PO4/AgBr/AgI photocatalysts showed much higher photocatalytic activity than bulk Ag3PO4 for the degradation of formaldehyde (HCHO), and 100% HCHO degradation could be obtained within 28 min. The degradation efficiency could be maintained in five cycles. Further electron paramagnetic resonance (ESR) tests demonstrated that both •OH and •O2- generated in the system. This study provides new insights into the fabrication of highly efficient visible-light-driven photocatalysts and facilitates their practical application in emerging environment issues.

14.
Water Res ; 225: 119147, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36206684

RESUMEN

Per-/polyfluoroalkyl substances (PFASs) contamination has caused worldwide health concerns, and increased demand for effective elimination strategies. Herein, we developed a new indole derivative decorated with a hexadecane chain and a tertiary amine center (named di-indole hexadecyl ammonium, DIHA), which can form stable nanospheres (100-200 nm) in water via supramolecular assembly. As the DIHA nanospheres can induce electrostatic, hydrophobic and van der Waals interactions (all are long-ranged) that operative cooperatively, in addition to the nano-sized particles with large surface area, the DIHA nanocomposite exhibited extremely fast adsorption rates (in seconds), high adsorption capacities (0.764-0.857 g g-1) and selective adsorption for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), outperformed the previous reported high-end PFASs adsorbents. Simultaneously, the DIHA nanospheres can produce hydrated electron (eaq-) when subjected to UV irradiation, with the virtue of constraining the photo-generated eaq- and the adsorbed PFOA/PFOS molecules entirely inside the nanocomposite. As such, the UV/DIHA system exhibits extremely high degradation/defluorination efficiency for PFOA/PFOS, even under ambient conditions, especially with the advantages of low chemical dosage requirement (µM level) and robust performance against environmental variables. Therefore, it is a new attempt of using supramolecular approach to construct an indole-based nanocomposite, which can elegantly combine adsorption and degradation functions. The novel DIHA nanoemulsion system would shed light on the treatment of PFAS-contaminated wastewater.


Asunto(s)
Ácidos Alcanesulfónicos , Compuestos de Amonio , Fluorocarburos , Contaminantes Químicos del Agua , Fluorocarburos/química , Adsorción , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Ácidos Alcanesulfónicos/química , Caprilatos/química , Agua , Indoles , Aminas
15.
Se Pu ; 40(9): 797-809, 2022 Sep.
Artículo en Chino | MEDLINE | ID: mdl-36156626

RESUMEN

Various types of oxidative dyes used in hair dye products possess poor stability and have varying frequency of use. Interference problems also frequently arise in actual sample measurements. Therefore, it is necessary to establish a simple, rapid, accurate, and specific method for the determination of common dyes in hair dye products for their effective regulation. In this study, dyes were grouped according to their frequency of use. Using a C18 column that minimizes the silanol effect and influence of metals, the quantitative high performance liquid chromatography (HPLC) method for 32 dyes listed in Safety and Technical Standards for Cosmetics (2015 edition) was optimized, and a high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) confirmatory method for the dyes was established. The samples were extracted using a mixed solution of ethanol-water (1∶1, v/v) with 10 g/L sodium bisulfite solution as an antioxidant, vortexed and mixed, and then extracted by ultrasonication in an ice bath for 10 min. Methanol, acetonitrile, and phosphate buffer were used as the mobile phases in the HPLC analysis. Additionally, two different elution conditions (chromatographic gradient) were used for the separation of 32 oxidative dyes, which were detected at a wavelength of 280 nm. The HPLC separations were compared using columns of particle sizes 5 µm and 2.7 µm; 5 µm C18 columns with better anti-interference and antiblocking ability were selected. Satisfactory separation was achieved for all three commercial C18 columns with a particle size of 5 µm, and the method had good general usability. In condition 1, 17 commonly used dyes and three less commonly used dyes were assigned to group Ⅰ and separated by HPLC; in condition 2, eight banned dyes and four other less commonly used dyes were assigned to group Ⅱ and separated by HPLC. The HPLC-MS/MS method used 5 mmol/L ammonium acetate aqueous solution-acetonitrile and 5 mmol/L acetic acid aqueous solution-acetonitrile as mobile phases in the positive and negative ion modes, respectively. Multiple reaction monitoring (MRM) was performed for qualitative and quantitative analyses in the electrospray ionization mode. Under the examined conditions, six pairs of isomers were well resolved. For the HPLC and HPLC-MS/MS methods, the relative standard deviations (RSDs) of the intra-day precision and 48 h stability tests were less than 10%. The recoveries were between 82.6% and 114.9% (RSD<10%). In the HPLC method, 32 dyes showed good linearity in an approximate range of 10-500 mg/L (r2>0.99), and the limits of detection (LODs) were 9.7-40.1 µg/g. The linear range of hydroquinone in the HPLC-MS/MS method was 2.0-79.7 mg/L, and the LOD was 8.0 µg/g; the linear ranges of the other components were approximately 0.1-4 mg/L, and the LODs were 0.01-0.4 µg/g. The actual samples were simultaneously measured by HPLC, HPLC-MS/MS, and the standard method. Finally, 16 of the 32 dyes were detected, and the detected contents ranged from 58 to 25160 µg/g. The RSDs of the results obtained from the three detection methods were between 1.9% and 10.1%. All detected components were within the limits of group Ⅰ of this method. In comparison with methods reported in the literature and the standard method, this method covers all components for the routine regulatory inspection of oxidative dyes in cosmetics. The method can separate the commonly used dyes under the same HPLC conditions and avoid interference from 15 other commonly used dyes during the analysis of actual samples. A suitable HPLC-MS/MS confirmatory method was also established for the identification of currently unknown substances in the statutory inspection of cosmetics. The method is simple, rapid, accurate, and specific with general usability and good operability.


Asunto(s)
Cosméticos , Tinturas para el Cabello , Acetatos , Acetonitrilos , Antioxidantes/análisis , Cromatografía Líquida de Alta Presión , Cosméticos/análisis , Etanol , Tinturas para el Cabello/análisis , Hidroquinonas/análisis , Hielo/análisis , Metanol , Estrés Oxidativo , Fosfatos , Espectrometría de Masas en Tándem
16.
Environ Sci Technol ; 56(6): 3699-3709, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35226468

RESUMEN

The addition of iodide (I-) in the UV/sulfite system (UV/S) significantly accelerated the reductive degradation of perfluorosulfonates (PFSAs, CnF2n+1SO3-) and perfluorocarboxylates (PFCAs, CnF2n+1COO-). Using the highly recalcitrant perfluorobutane sulfonate (C4F9SO3-) as a probe, we optimized the UV/sulfite + iodide system (UV/S + I) to degrade n = 1-7 PFCAs and n = 4, 6, 8 PFSAs. In general, the kinetics of per- and polyfluoroalkyl substance (PFAS) decay, defluorination, and transformation product formations in UV/S + I were up to three times faster than those in UV/S. Both systems achieve a similar maximum defluorination. The enhanced reaction rates and optimized photoreactor settings lowered the EE/O for PFCA degradation below 1.5 kW h m-3. The relatively high quantum yield of eaq- from I- made the availability of hydrated electrons (eaq-) in UV/S + I and UV/I two times greater than that in UV/S. Meanwhile, the rapid scavenging of reactive iodine species by SO32- made the lifetime of eaq- in UV/S + I eight times longer than that in UV/I. The addition of I- also substantially enhanced SO32- utilization in treating concentrated PFAS. The optimized UV/S + I system achieved >99.7% removal of most PFSAs and PFCAs and >90% overall defluorination in a synthetic solution of concentrated PFAS mixtures and NaCl. We extended the discussion over molecular transformation mechanisms, development of PFAS degradation technologies, and the fate of iodine species.


Asunto(s)
Fluorocarburos , Yodo , Contaminantes Químicos del Agua , Fluorocarburos/análisis , Yoduros , Sulfitos , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis
17.
Sci Total Environ ; 808: 152083, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-34856276

RESUMEN

The overuse of ciprofloxacin (CIP), causing serious environment pollution, has drawn great attentions. To provide alternative solution to this problem, we synthesized a snow-like BiVO4 with rich oxygen vacancy by adjusting the amounts of cetyltrimethyl ammonia bromide (CTAB) surfactant. Various characterizations were performed to investigate the morphology and surface properties of the synthesized BiVO4. Interestingly, both the morphology and the amount of oxygen vacancy were related to the concentration of additional CTAB, and the most oxygen vacancies were generated when specific amount of CTAB (molar ratio of CTAB to Bi3+ of 0.2) was introduced. Photoluminescence and photoelectrochemical tests demonstrated that the presence of oxygen vacancy significantly enhanced the separation efficiency of photo-generated carriers in BiVO4. Subsequently, CIP photodegradation was significantly enhanced in the presence of snow-like BiVO4. Both quenching experiments and EPR tests demonstrated that photogenerated holes and •O2- were the main active species contributing to CIP degradation. Furthermore, CIP transformation pathway was proposed based on the identified transformation products. Our study developed a novel method to synthesize a BiVO4 material with snow-like morphology and abundant oxygen vacancy by simply varying the amount of surfactant. This study would shed light on designing the next generation photocatalyst with the assistant of surfactant to control the surface properties.


Asunto(s)
Bismuto , Ciprofloxacina , Catálisis , Luz , Oxígeno
18.
J Hazard Mater ; 427: 127944, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-34865900

RESUMEN

Microplastics are emerging contaminants that are increasingly detected in soil environment, but their impact on soil microbiota and related biogeochemical processes remains poorly understood. In particular, the mechanisms involved (e.g., the role of chemical additives) are still elusive. In this study, we found that plasticizer-containing polyvinyl chloride (PVC) microplastics at 0.5% (w/w) significantly increased soil NH4+-N content and decreased NO3--N content by up to 91%, and shaped soil microbiota into a microbial system with more nitrogen-fixing microorganisms (as indicated by nifDHK gene abundance), urea decomposers (ureABC genes and urease activity) and nitrate reducers (nasA, NR, NIT-6 and napAB genes), and less nitrifiers (amoC gene and potential nitrification rate). Exposure to plasticizer alone had a similar effect on soil nitrogen parameters but microplastics of pure PVC polymer (either granule or film) had little effect over 60 days, indicating that phthalate plasticizer released from microplastics was the main driver of effects observed. Furthermore, a direct link between phthalate plasticizer, microbial taxonomic changes and altered nitrogen metabolism was established by the isolation of phthalate-degrading bacteria involved in nitrogen cycling. This study highlights the importance of chemical additives in determining the interplay of microplastics with microbes and nutrient cycling, which needs to be considered in future studies.


Asunto(s)
Microbiota , Microplásticos , Nitrógeno , Ácidos Ftálicos , Plastificantes , Plásticos , Suelo , Microbiología del Suelo
19.
Water Res ; 204: 117597, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34482095

RESUMEN

In recent years, great efforts have been made to understand the capacity of microplastics to adsorb environmental pollutants; however, relatively little is known about the ability of microplastics to release inherent additives into peripheral environments. In this study, we investigated the leaching behavior of phthalate plasticizer from polyvinyl chloride (PVC) microplastics, in aqueous solutions relevant to aquatic and soil environments. It was found that plastic properties, such as particle size, plasticizer content and aging of plastics had a great effect on the leaching of dibutyl phthalate (DnBP). Phthalate release was generally higher in smaller particles and particles with higher phthalate content. Whereas, plastic aging caused by solar irradiation could either enhance phthalate release by increasing plastic hydrophilicity or decrease the leaching by reducing readily available fractions of phthalate. Regarding environmental factors, solution pH (3-9) and ionic strength (0-0.2 M NaCl) were found to have minor effect on phthalate release, while fulvic acid (0-200 mg/L) greatly promoted the release by improving phthalate solubility and solution-plastic affinity. Interestingly, we found that more DnBP was leached out when fulvic acid and NaCl coexisted, and the results from dissolved organic carbon (DOC) and three-dimensional fluorescence spectroscopy analyzes suggested that the leaching of other fulvic acid-like additives might have played a role. These findings would be helpful for predicting the potential of microplastics to release toxic additives under different environmental conditions.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Dibutil Ftalato , Plastificantes , Plásticos , Cloruro de Polivinilo , Contaminantes Químicos del Agua/análisis
20.
Sci Total Environ ; 796: 148923, 2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34271391

RESUMEN

Biochar is widely applied in soil for agricultural and environmental purposes. Soluble fraction of biochar may be released from bulk biochar as dissolved biochar (DBC) after irrigation or rainfall. DBC had been reported to possess high chemical activity in aqueous system, while less attention was paid to the impact of DBC on the soil environmental processes. In this work, the impact of DBC on ferric (hydro) oxides was systematically examined. Our study showed that DBC prepared from rice straw could significantly promote the dissolution of ferric oxides with unstable and metastable crystalline structures, e.g., ferrihydrite under relatively acidic condition. Organic ligand-promoted dissolution was the main mechanism for iron release from ferrihydrite, and the low-molecular-weight DBC component (less than 1000 Da) was the major contributor for this process. Furthermore, the organic carbon content normalized ligand-promoted dissolution capacity for DBC was much higher than common dissolved organic matters. More importantly, DBC could promote the release of Cr from dichromate-adsorbed ferric mineral. Our results suggest that in soils with relatively low pH and high contents of ferric hydroxides, e.g., red soil in southern China, DBC derived from applied biochar could enhance the mobility and bioavailability of iron and other heavy metals. The dissolved metals would play active roles in soil redox cycle and biotic processes. Therefore, it's necessary to evaluate the long-term impact of biochar application on acidic field soils with high iron content.


Asunto(s)
Cromo , Contaminantes del Suelo , Carbón Orgánico , Hierro , Suelo , Contaminantes del Suelo/análisis , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...